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Abstract

We discuss vibration suppression in a lumped torsional system using wave-absorption control with online
computation of an imaginary wave-propagation system similar to the real-controlled system. The basic
concept of control was presented elsewhere for a multiple pendulum system to suppress free vibrations. We
studied the suppression of forced vibration by a wave-absorption control for a lumped torsional system.
Results confirmed that the proposed method works well on forced vibrations as on free vibrations.
Initialization, setting amplitudes and velocities to zero, of the imaginary system for forced vibration control
influences controlled amplitudes more than that for free vibration because vibration energy invariably
comes in the system. Using numerical simulation, we studied initializations. Theoretical analysis on wave
propagation in a lumped system has shown that smaller mass and larger spring stiffness of an imaginary
system absorb vibration energy better, giving the optimum design for the imaginary system. Experiments
are conducted for one-, two-, and three-degrees-of-freedom systems.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active vibration suppression in structures and mechanical systems consists primary of the
modal vibration control and wave-absorption control. Modal vibration control is based on
natural vibration modes, i.e., the system’s standing-wave state. Wave-absorption control is based
on vibration-energy absorption by impedance matching, i.e., the system’s progressive-wave state.
Modal vibration control is used widely in different fields, but wave-absorption control has
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advantages over modal vibration control in certain fields. The wave-absorption process is
conducted based on local wave-propagation properties, with no need to deal with total system,
and it is applicable to any system even if only information on the structure where waves propagate
is known. Wave-absorption control, however, requires information on where waves propagate,
making it suitable for one-dimensional (1-D) structures or assemblies of 1-D elements. Wave
control in 1-D structures [1–9] has been widely studied. Von Flotow [1,2] and Miller and von
Flotow [3] treated truss structures and power flow, and Fujii et al. [4,5] discussed design
procedures for wave-absorption controllers with non-collocated sensors and actuators. Elliott and
Billet [6] studied controllers with adaptive digital filters for beams, and Gardonio and Elliott [7]
dealt with longitudinal and flexural waves in beams. Matsuda et al. [8] discussed a FEM-based
transfer matrix approach, and Utsumi [9] presented analytical implementation of wave-
absorption control for beams. The above studies dealt with continuous structures such as beams
and truss structures. Wave propagation in periodic structures of lumped systems has long been
treated [10], but wave-absorption control researches on lumped systems has been less so [11–13].
Examples include O’ccoure’s [11] treatment of a lumped parameter mass-and-spring system as a
model of a flexible arm and Saigo et al.’s [12,13] studies of a multiple-pendulums system. Another
problem of wave-absorption control is that the control law includes the square root of Laplacian
s; which cannot be implemented in real hardware by usual methods, meaning most studies in
experiments have used approximations of the control law. To overcome this problem, we present
a new method [12] that uses online computer simulation of a large degree-of-freedom (d.o.f)
structural system having properties similar to the actual controlled system. This ‘‘imaginary’’
system is connected virtually to the real system by an actuator satisfying the continuity condition
between real and imaginary systems, which we term wave-absorption control with an imaginary
system (WCIS). WCIS realizes an infinite structural system free of wave reflections in the
controlled real system if a suitable process is conducted to clear the vibrating energy in
the imaginary system at appropriate timing. For this, WCIS initializes the imaginary system where
deflections and velocities of all elements are set to zero except for the end element of the
connecting side. Initialization should be done before the reflecting wave from the end of
the imaginary system reaches the real system. In a previous study [12,13], we applied WCIS to free
vibrations where total vibration energy is limited. It is not clear at this stage if WCIS is applicable
to a general mechanical vibration system such as the mode-based vibration control strategy.

We apply WCIS to forced torsional vibration of multiple-d.o.f. system, studying the properties
of initializations by numerical simulation. We studied wave propagation properties in a multiple-
d.o.f. periodic system theoretically to obtain optimal parameters for the imaginary system,
conducting experiments to confirm the effectiveness of WCIS.

2. Control law

2.1. Control strategy

The 1-D torsional vibration system considered consists of torsional bars and rigid discs (Fig. 1).
Rigid lines represent the real system and dotted lines the imaginary system. Our control is to
compensate for torque kmþ1fmþ1; i.e., generated at the (imaginary) connecting torsional bar
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between the real and imaginary discs, by an actuator, and to absorb vibration energy in the real
system propagated to the imaginary system. The imaginary system is assumed to have sufficient
d.o.f. This process involves a quasi-infinite system and realizes nearly steady state wave
propagation. The procedure is explained as follows by the use of the equation of motion:

Consider an (m þ n)-d.o.f. torsional vibration system in which the controlled (real) system is m-
d.o.f. and the imaginary system n-d.o.f. The equation of motion is expressed as

ð1Þ

where ki; Ii;fi are the spring constant of ith torsional bar, the moment of inertia of ith rigid disc,
and the torsional angle of ith torsional bar. External disturbance on the ith disc is expressed as Ti:
The moment of inertia of the left-end disc and the external disturbance on it are represented by I0
and T0:

The vibration energy in the real system propagates to the imaginary system based on
propagation properties when Eq. (1) is completely realized. Elements whose suffixes exceed
(m þ 1) in Eq. (1) are virtual, so, we must compensate for the term relating to fmþ1 (enclosed
by a solid rectangle in Eq. (1)) as control acceleration. Equations of motion including
variables whose suffixes exceed (m þ 1) are solved by online calculation, where variable fm

(enclosed by a dot–dash rectangle in Eq. (1)) is measured. This process is a feedforward control
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Fig. 1. Real and imaginary torsional vibration systems connected.
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with a single input and single output because the measured variable fm is not compensated for
directly.

The above control strategy is based on the concept that the wave-absorption control is
equivalent to making the controlled system having no wave reflections at the boundary, i.e., to
virtually realize an infinite structure in a finite structure. Our control strategy to connect a
virtually large-d.o.f. system with initialization detailed in the section below is wave-absorption
control, even though the control strategy does not use wave-absorption conditions as in wave
control of elastic continuous structures in Refs. [1–9].

2.2. Initialization of imaginary system

In an insufficient-d.o.f. imaginary system for total energy to be absorbed, the imaginary system
must have no kinetic and potential energy, with initialization of the imaginary system, at
appropriate timing. We use [12,13] the following initialization; when fm ¼ 0 or ’fm ¼ 0; all
imaginary variables are set to zero, fmþi ¼ ’fmþi ¼ 0 (i ¼ 1 to n), which we term RDI0 and RVI0.
These initializing timings are considered to influence the real system less because no energy or
energy flow exists in the connecting spring km at this moment. The continuity of ’fmþ1 in RDI0 and
fmþ1 in RVI0 may enhance control performance, termed RDI and RVI. RDI sets fmþ1 ¼ fmþi ¼
’fmþi ¼ 0 (i ¼ 2 to n) when fm ¼ 0 and keeps ’fmþ1 unchanged, and RVI sets fmþi ¼ ’fmþ1 ¼
’fmþi ¼ 0 (i ¼ 2 to n) when ’fm ¼ 0 and keeps fmþ1 unchanged. These are tried for the first time, to
our knowledge, in this paper. The above four methods initializing at fm ¼ 0 or ’fm ¼ 0; RDI0,
RVI0, RDI and RVI (R-methods), are modified to IDI0, IVI0, IDI, and IVI (I-methods) initializing
at fmþ1 ¼ 0 or ’fmþ1 ¼ 0: R-methods are based on the vibration state of the real system and
I-methods on the imaginary system. In diagrammed R-methods (Fig. 2), initialization is
conducted at each timing of fm ¼ 0 or ’fm ¼ 0: It is sufficient to initialize system after condition
jfmþnjXe is satisfied, where positive value e is given appropriately. Reducing the number of
initializations per unit time diminishes the undesirable influence of initialization on the real
system, but it is difficult to get optimum e theoretically because it depends on the vibration state of
the system.

2.3. Optimization of imaginary systems

To obtain optimal parameters of the imaginary system as a vibration energy absorber, we
analyzed a periodic disc-and-torsional spring system theoretically. The kth equation of motion of
the system (Fig. 3) is

.fkþ1 �
k

I
fk þ 2

k

I
fkþ1 �

k

I
fkþ2 ¼ 0 ðka1; 0Þ: ð2Þ

Laplace transformation of Eq. (2) is

Ukþ2ðsÞ � 2þ
I

k
s2

� �
Ukþ1ðsÞ þ UkðsÞ ¼ 0; ð3Þ
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where UkðsÞ is Laplace transformation of fk: Substituting general solution UkðsÞ ¼ bk into
Eq. (3), we obtain the specific roots

b ¼ 1þ s2
I

2k
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

I

2k

� �2

�1

s
� 1þ s2

I

2k
8

ffiffiffiffiffi
b0

q
� bþ;b� ð4Þ

and the general solution

UkðsÞ ¼ c1ðsÞðb
þÞk þ c2ðsÞðb

�Þk � Uþ
k ðsÞ þ U�

k ðsÞ; ð5Þ

where c1ðsÞand c2ðsÞ are arbitrary constants determined by boundary conditions.
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Fig. 3. Homogenous disc and torsional spring system with terminal impedance.
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When b0 in Eq. (4) is negative, bþ represents a positive propagating solution and b� a negative
propagating solution. By introducing s ¼ jo (j is the imaginary unit), the condition of existence of
propagating solution b0p0 gives the limit frequency as

op2
ffiffiffiffiffiffiffiffi
k=I

p
� 2o0: ð6Þ

The mechanical impedance for the positive propagating solution is

zþðsÞ ¼
s

kð1� bþÞ
: ð7Þ

When terminal impedance zt is zþðsÞ; no wave reflection occurs.
The no wave reflection above is ideal as a wave absorber and expressed in mobility form as

l ¼
k

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

4

o
o0

� �2
s

� j
o

2o0

8<
:

9=
;: ð8Þ

Eq. (6) shows that the disc-and-torsional spring wave absorber must have a specific frequency
o0 ¼

ffiffiffiffiffiffiffiffi
k=I

p
; i.e., greater than half of the disturbance frequency of the controlled system. Eq. (8)

shows that a larger spring constant better absorbs the vibration energy for a given input velocity
and a specific frequency.

From Eq. (4), we obtain

jbþð�Þj2 ¼ 1; ð9Þ

which means the steady state wave amplitude is constant regardless of the frequency. The wave
propagation condition thus realizes no resonance occurring in the standing-wave condition, but
antiresonance phenomena simultaneously disappear. The amplitude of the wave propagation
condition near the frequency of antiresonance occurring in a standing-wave condition may exceed
that of uncontrolled amplitude, although these amplitudes are very small.

The phase difference between two adjacent elements in a wave propagation condition is
obtained by substituting s ¼ joð¼ jno0Þ to bþ of Eq. (4) (Fig. 4). Eq. (9) and Fig. 4 evidence the
wave propagation condition of a vibrating system.
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3. Simulation

3.1. Homogeneous real system

Here, we treat a three-d.o.f. homogeneous real system where all torsional springs and discs are
the same. Parameters of the analytical real system are the same as those of the experiment detailed
in the next section, the moment of inertia I ¼ 0:0123 kgm2, and spring constant of torsional bar
k ¼ 21:4Nm. Parameters of the imaginary system are the same as for the real system except for
the number of d.o.f. Disturbance torque T0 is applied to the left end disc of the real system.

Fig. 5 shows the controlled response using the 40-d.o.f. imaginary system calculated by the
sampling period of 1ms and IVI initialization. The time when variable f43 (m ¼ 3; n ¼ 40) is set to
zero is the initializing timing. Disturbance acceleration T0=I is sin ðno0tÞðo0 ¼

ffiffiffiffiffiffiffiffi
k=I

p
; n ¼ 0:566Þ:

Note the influence of initialization seen just after the initialization timing as the larger amplitude.
Virtually no influence is observed, however, after 1 period of disturbance. Fig. 6 shows the
controlled amplitude versus disturbance frequency with a 40-d.o.f. imaginary system and IDI0

initialization. n denotes the steady state amplitude in which the influence of initialization died
away, and B the maximum amplitude just after initialization. Steady state amplitudes are
constant below the wave propagation limit frequency given by Eq. (6), which coincides with the
analytical result Eq. (9). These steady state amplitudes coincide with those of a sufficiently large-
d.o.f. system obtained by modal vibration analysis with nearly zero frequency disturbance, not
with those of a three-d.o.f. system (Fig. 6).

Figs. 7 shows the timing chart at resonance frequencies. Control starts 2 s after disturbance is
applied. These are typical features of wave control; after control starts, all amplitudes propagate
with the same magnitude and constant phase shift through a transient period. We compare the
phase difference in wave propagation state between f1 and f3 (Fig. 7) and the theoretical states
(Fig. 4). The theoretical phase shift between adjacent elements at frequencies n ¼ 0:765 (first-
resonance frequency), 1.41 (second-resonance frequency) and 1.85 (third-resonance frequency) are
�45	, �90	 and �135	. Note the phase difference between f1 and f3 is about 2
 (�45)	,
2
 (�90)	 and 2
 (�135)	, coinciding with the theoretical ones. The theoretical results (4) and
(9) are thus key features of the wave propagation condition of the homogeneous system.

We have presented 8 types of initialization —RDI, RDI0, RVI, RVI0, IDI, IDI0, IVI, and IVI0.
We found no general qualitative tendency among these methods by simulations, however, because
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controlled amplitudes depend on computation conditions such as initial conditions, e detailed in
Section 2.2, and the number of d.o.f. of real and imaginary systems. We cannot yet conclude
which method is best. Below, we show results of I-methods as examples. Fig. 8 shows maximum
amplitudes versus disturbance frequency for 10-d.o.f. and 40-d.o.f. imaginary systems. Maximum
amplitudes depend significantly on the disturbance frequency and the smaller d.o.f. imaginary
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system has worse performance. Frequent initialization due to the smallness of the imaginary
system does not give a steady state condition such as seen in Fig. 5. Fig. 9 shows a typical example
in which low-frequency vibration arises synchronized with initialization timing in addition to
disturbance frequency vibration. Initialization occurs before steady state vibration is established.
Comparing Figs. 8(a) and (b), the 40-d.o.f. imaginary system shows better performance in
initialization than the 10-d.o.f. imaginary system, so, the best way to avoid the undesirable
influence of initialization is to use a large-d.o.f. imaginary system.

3.2. Non-homogeneous real systems

We discuss control performance of WCIS for non-homogeneous three-d.o.f. real systems using
a homogeneous imaginary system. The disc-and-torsional spring imaginary system absorbs
vibration energy if condition (6) is satisfied. This condition is realized for arbitrary disturbance
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frequency by using a large enough spring constant. If the amplitude of the element adjacent to the
imaginary system is extremely small compared to those of other elements, however, controlled
amplitudes of some elements may increase. This property is based on mode shapes of the
resonance of real system. We analyze six cases of a spring constant, i.e., six different resonance
mode shapes (Table 1): (a) k1 : k2 : k3 ¼ 20 : 10 : 1; (b) k1 : k2 : k3 ¼ 10 : 20 : 1; (c) k1 : k2 : k3 ¼
0:05 : 0:1 : 1; (d) k1 : k2 : k3 ¼ 0:1 : 0:05 : 1; (e) k1 : k2 : k3 ¼ 20 : 0:05 : 1; and (f) k1 : k2 : k3 ¼
0:05 : 20 : 1: The imaginary system has spring constant k
 k3; where k is a parameter. The
moment of disc inertia is the same as the experimental one in both real and imaginary systems,
and k3 is fixed as the experimental one. Disturbance acceleration sinðni

ffiffiffiffiffiffiffiffiffiffi
k3=I

p
tÞ is applied to the

disc I3; where ni is the non-dimensional ith resonance frequency. Fig. 10 shows the maximum
amplitudes among three elements at each resonance frequency obtained by the 40-d.o.f. imaginary
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Table 1

Parameters used in Fig. 8

Case Spring constant Non-dimensional first

critical frequency (k)
Non-dimensional second

critical frequency (k)
Non-dimensional third

critical frequency (k)

A k1 ¼ 20; k2 ¼ 10;
k3 ¼ 1

1.12 (1,5,15) 3.66 (5,10,15) 6.88 (15,20,30)

B k1 ¼ 10; k2 ¼ 20;
k3 ¼ 1

1.13 (1,5,15) 3.61 (5,10,15) 6.9 (15,20,30)

C k1 ¼ 0:05; k2 ¼ 0:1;
k3 ¼ 1

0.223 (1,5,15) 0.443 (1,5,15) 1.43 (1,5,15)

D k1 ¼ 0:1; k2 ¼ 0:05;
k3 ¼ 1

0.207 (0.1,1,10) 0.24 (1,10) 1.42 (1,10,20)

E k1 ¼ 20; k2 ¼ 0:05;
k3 ¼ 1

0.222 (0.1,1,20) 1.42 (1,10,20) 6.33 (10)

F k1 ¼ 0:05; k2 ¼ 20;
k3 ¼ 1

0.257 (1,10) 1.22 (1,5,10) 6.37 (15,30,45)

Resonance frequency ¼ ni
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Fig. 10. Response of non-homogeneous real system at resonance frequencies, symbol a i: case a(=a,b,c,d,e,f) and

number of mode i; ni: non-dimensional resonance frequency in Table 1, k: parameter in Table 1.
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system and IDI0 initialization. The axis of abscissa 2
ffiffiffi
k

p
=ni represents the ratio on the right side of

Eq. (6), 2
ffiffiffiffiffiffiffiffiffiffiffiffi
kk3=I

p
; to the left side of Eq. (6), ni

ffiffiffiffiffiffiffiffiffiffi
k3=I

p
; and corresponds to the margin of

resonance frequency from the wave propagation limit. The propagation limit is represented
as 2

ffiffiffi
k

p
=ni ¼ 1: The same symbols in Fig. 10 show the effect of k on the controlled amplitude

of each resonance frequency. Some resonance frequencies have amplitudes that are quite
large, e.g., exceeding 1.0E-2, and do not decrease as k becomes larger; d1:case (d) 1st critical,
e1:case (e) 1st critical, f1:case (f) 1st critical, d2:case (d) 2nd critical, etc. Natural resonance
modes of these cases have very small amplitudes of f3; and the energy absorbed by the
imaginary system is quite small compared to total vibration energy. Based on this, we say that the
wave control performance of non-homogeneous systems depends on natural vibration modes, not
on the disturbance frequency, and is not substantially changed by the design of the imaginary
system.

4. Experiments

Fig. 11 shows the experimental apparatus. The homogeneous real vibration system consists of
discs 200mm in diameter and 20mm thick and torsional bars 4mm in diameter and 100mm long
for two- and three-d.o.f. systems and 210mm long for one-d.o.f. system. AC servomotors are used
for drive and control. The drive motor has a rated torque of 0.9Nm and a rated speed of
3000 r.p.m. and the control motor has a rated torque of 0.16Nm and a rated speed of 3000 r.p.m.
The measurement system consists of rotary encoders, a torsional angel converter, low-pass and
high-pass filters, and a personal computer (CPU clock: 266MHz). Torque disturbance is applied
by torque fluctuation of the AC drive motor in constant speed mode, which is 4 times, 2 times, and
1 time per rotation, so, resonance may occur at a rotation speed of 1

4
; 1

2
; and 1

1
of the natural

frequency. Torque magnitude cannot be adjusted. A 10-d.o.f. imaginary system is computed by
the Euler method with a sampling period of 3ms. Experiments are conducted for one-, two-, and
three-d.o.f. with the same control program.

Fig. 12 shows controlled and uncontrolled amplitudes at the first-resonance frequency of the
two-d.o.f. real system, where control starts at about 0.8 s (the computer and the recorder are not
linked). Fig. 12(a) shows amplitudes of f1 and f2: Figs. 12(b) and (c) show f1 and 2f2:
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Fig. 11. Experimental apparatus.
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Figs. 12(b) and (c) show amplitudes on the magnified time scale. Amplitudes are suppressed
considerably by control and the phase between f1 and f2 of the controlled amplitudes is shifted
(Fig. 12(c)). The non-dimensional frequency of the first torsional resonance of the two-d.o.f. real
system n12 is 1, and the corresponding theoretical phase shift is �60	 (Fig. 4). Fig. 12(c) shows the
phase difference between f1 and f2 is about �60	. The correspondence of phase shifts between
experimental and theoretical results shows that wave control is realized in the experimental set-up.
Fig. 13 shows uncontrolled and controlled amplitudes at the second-resonance frequency of the
two-d.o.f. real system and the correspondence of phase shifts between experimental and
theoretical results similar to the first-resonance case.

Fig. 14 shows experimental results for the one-d.o.f. real system with RDI0 initialization.
Resonance occurs at 1.1, 2.2, and 4.4 r.p.s. when uncontrolled, and the effect of vibration
suppression by control is marked at these resonance speeds. Fig. 15 shows experimental results for
the two-d.o.f. real system with RDI0 initialization. Resonance occurs at 0.92 and 4.3 r.p.s. of the
first-mode resonance, and 1.81 and 3.62 r.p.s. of the second-mode resonance when uncontrolled.
At these resonance speeds, vibration amplitudes are remarkably suppressed by control. Fig. 16
shows experimental results for the three-d.o.f. real system with RVI0 initialization. Resonance
occurs at 0.84 and 3.37 r.p.s. of the first-mode resonance, 1.48 and 5.9 r.p.s. of the second-mode
resonance, and 3.86 and 7.72 r.p.s. of the third-mode resonance. In this case, control is somewhat
worse than for one- and two-d.o.f. systems. Figs. 17(a)–(d) show the timing charts of the three-
d.o.f. case at 0.84 and 3.37 r.p.s. of the first-mode resonance, 5.9 r.p.s. of the second-mode
resonance, and 7.72 r.p.s. of the third-mode resonance. Figs. 17(a) and (d) show vibrations of
low frequency besides those of torque-induced frequency such in Fig. 9. If we ignore these
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Fig. 12. Experimental waveforms of two-d.o.f. real system at 4.32Hz excitation. (first-mode resonance); ang1: f1;
ang2: f2:
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low-frequency vibrations, controlled amplitudes in Fig. 17 are nearly the same level as in one- and
two-d.o.f. systems.

Our experimental apparatus is not perfect for WCIS, but experimental results show that it is
easy to realize WCIS for forced vibration.
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5. Conclusions

We have shown by simulation and experiment the effectiveness of wave absorption control with
an imaginary system in suppressing torsional forced vibration. Our major results are as follows:

(1) Wave-absorption control is possible in a 1-D multiple-d.o.f. torsional forced vibration system
by connecting the imaginary and real systems and compensating for connection torque.

(2) The optimum design of an imaginary system consisting of discs and torsional springs has a
large specific frequency and a large spring constant.

(3) A larger d.o.f. imaginary system reduces undesirable effects of initialization more than a
smaller d.o.f. imaginary system.

(4) Wave control with the imaginary system is effective for a real system having large vibration
amplitudes of the connection element when uncontrolled, so, control performance depends on
natural resonance modes for non-homogeneous real systems.

Appendix A. Nomenclature

ki; k spring constant of ith torsional bar for non-homogeneous and homogeneous systems
Ii; I moment of inertia of ith disc for non-homogeneous and homogeneous systems
fi angle of ith torsional bar
Ti disturbance torque on ith disc
o0 specific frequency for homogeneous system (¼

ffiffiffiffiffiffiffiffi
k=I

p
)

n non-dimensional frequency normalized by o0

nj
i non-dimensional jth resonance frequency of i-d.o.f. system normalized by o0

t time
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